Overview of Laboratory Studies Related to NOx/NOy Chemistry in the UT/LS

Randall R. Friedl Jet Propulsion Laboratory

Workshop on Nitrogen Oxides in the Lower Stratosphere and Upper Troposphere -Heidelberg, Germany March 20, 2001

Key Lab Questions on UT/LS NOx/NOy

- Are reaction rates known well enough for the important ozone related reactions involving NOx/NOy?
- Are we overlooking significant gas phase photochemical processes?
- Can atmospheric aerosols act to deactivate NOx and remove NOy?
- Can atmospheric aerosols catalyze reactivation of NOx from NOy?

Lab Progress - 1

- Reducing uncertainty on known photochemical processes
 - HNO₄ and PAN quantum yields
 - Reevaluation of OH + NO₂
- New gas-phase processes
 - HNO₄ overtone spectroscopy and photodissociation

Lab Progress - 2

- Aerosol Uptake
 - HNO₄ and PAN accommodation coefficients in sulfuric acid
 - HNO₃ and HNO₄ uptake on ice
- Heterogeneous Reactions
 - Conversion of HNO₃ to NO_x on soot

Future Lab Directions

- Further investigation of cirrus-scavenging: HNO₃ and HNO₄ uptakes at lower partial pressures and/or warmer temperatures
- Identify additional heterogeneous and/or solution phase processes that involve the increased NO_x from aircraft. Especially consider those that could impact surface reactivity and cloud condensation nucleating capabiliy